
Logical Condition Criteria
Relational Expression
Extended Relational Expression
MASK Option
SCAN Option
BREAK Option
IS Option
Evaluation of a Logical Variable
MODIFIED Option
SPECIFIED Option
Fields Used Within Logical Condition Criteria
Logical Operators in Complex Logical Expressions

The basic criterion is a relational expression. Multiple relational expressions may be combined with logical operators
(AND, OR) to form complex criteria.

Arithmetic expressions may also be used to form a relational expression.

Logical condition criteria can be used in the following statements:

Statement Usage

FIND A WHERE clause containing logical condition criteria may be used to indicate criteria in
addition to the basic selection criteria as specified in the WITH clause. The logical condition
criteria specified with the WHERE clause are evaluated after the record has been selected
and read.

In a WITH clause, "basic search criteria" (as described with the FIND statement) are used,
but not logical condition criteria.

READ A WHERE clause containing logical condition criteria may be used to specify whether a
record that has just been read is to be processed. The logical condition criteria are evaluated
after the record has been read.

HISTOGRAM A WHERE clause containing logical condition criteria may be used to specify whether the
value that has just been read is to be processed. The logical condition criteria are evaluated
after the value has been read.

ACCEPT/REJECT An IF clause may be used with an ACCEPT or REJECT statement to specify logical
condition criteria in addition to that specified when the record was selected/read with a
FIND, READ, or HISTOGRAM statement. The logical condition criteria are evaluated after
the record has been read and after record processing has started.

IF Logical condition criteria are used to control statement execution.

DECIDE FOR Logical condition criteria are used to control statement execution.

REPEAT The UNTIL or WHILE clause of a REPEAT statement contain logical condition criteria
which determine when a processing loop is to be terminated.

Relational Expression

1Copyright Software AG 2003

Logical Condition CriteriaLogical Condition Criteria

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N E A N P I F B D T L G O yes yes

Operand2 C S A N E A N P I F B D T L G O yes no

For an explanation of the Operand Definition Table shown above, see Syntax Symbols and Operand Definition
Tables in the Natural Statements documentation. In the "Possible Structure" section of the table above, "E" stands for
arithmetic expressions; that is, any arithmetic expression may be specified as an operand within the relational
expression.

Examples:

 IF NAME = ’SMITH’
 IF LEAVE-DUE GT 40
 IF NAME = #NAME

For information on comparing arrays in a relational expression, see Processing of Arrays.

Note:
If a floating-point operand is used, comparison is performed in floating point. Floating-point numbers as such have
only a limited precision; therefore, rounding/truncation errors cannot be precluded when numbers are converted
to/from floating-point representation.

Copyright Software AG 20032

Logical Condition CriteriaRelational Expression

Arithmetic Expressions in Logical Conditions

The following example shows how arithmetic expressions can be used in logical conditions:

IF #A + 3 GT #B - 5 AND #C * 3 LE #A + #B

Handles in Logical Conditions

If the operands in a relation expression are handles, only EQUAL and NOT EQUAL operators may be used.

SUBSTRING Option in Relational Expression

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N A B yes yes

Operand2 C S A N A B yes no

Op3/Op5 C S N P I yes no

Op4/Op6 C S N P I yes no

With the SUBSTRING option, you can compare a part of an alphanumeric or a binary field. After the field name
(operand1) you specify first the starting position (op3) and then the length (op4) of the field portion to be compared.

Also, you can compare a field value with part of another field value. After the field name (operand2) you specify
first the starting position (op5) and then the length (op6) of the field portion operand1 is to be compared with.

You can also combine both forms, that is, you can specify a SUBSTRING for both operand1 and operand2.

Examples:

3Copyright Software AG 2003

Arithmetic Expressions in Logical ConditionsLogical Condition Criteria

This expression compares the 5th to 12th position inclusive of the value in field #A with the value of field #B:

SUBSTRING(#A,5,8) = #B

This expression compares the value of field #A with the 3rd to 6th position inclusive of the value in field #B:

#A = SUBSTRING(#B,3,4)

Note:
If you omit op3/op5, the starting position is assumed to be "1". If you omit op4/op6, the length is assumed to be from
the starting position to the end of the field.

Extended Relational Expression

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N* E A N P I F B D T G O yes no

Operand2 C S A N* E A N P I F B D T G O yes no

Operand3 C S A N* E A N P I F B D T G O yes no

Operand4 C S A N* E A N P I F B D T G O yes no

Operand5 C S A N* E A N P I F B D T G O yes no

Operand6 C S A N* E A N P I F B D T G O yes no

* Mathematical functions and system variables are permitted.
Break functions are not permitted.

Operand3 can also be specified using a MASK or SCAN option; that is, it can be specified as:

MASK (mask-definition) [operand]
MASK operand
SCAN operand

For details on these options, see the sections MASK Option and SCAN Option.

Examples:

Copyright Software AG 20034

Logical Condition CriteriaExtended Relational Expression

 IF #A = 2 OR = 4 OR = 7
 IF #A = 5 THRU 11 BUT NOT 7 THRU 8

MASK Option
With the MASK option, you can check selected positions of a field for specific content.

Constant Mask

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N A N P yes no

Operand2 C S A N P B yes no

Operand2 can only be used if the mask-definition contains at least one "X". Operand1 and operand2 must be
format-compatible: if operand1 is of format A, operand2 must be of format A, B or N; if operand1 is of format N or
P, operand2 must be of format N or P. An "X" in the mask-definition selects the corresponding positions of the
content of operand1 and operand2 for comparison.

Variable Mask

Apart from a constant mask-definition (see above), you may also specify a variable mask definition:

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N A N P yes no

Operand2 S A yes no

The content of operand2 will be taken as the mask definition. Trailing blanks in operand2 will be ignored.

5Copyright Software AG 2003

MASK OptionLogical Condition Criteria

Characters in a Mask

The following characters may be used within a mask definition (the mask definition is contained in mask-definition
for a constant mask and operand2 for a variable mask):

Character Meaning

. or ? or _ Indicates a single position that is not to be checked.

* or % Indicates any number of positions not to be checked.

/ (Slash) Used to check if a value ends with a specific character (or string of characters).

For example, the following condition will be true if there is either an "E" in the last position of the
field, or the last "E" in the field is followed by nothing but blanks:

IF #FIELD = MASK (*’E’/)

A The position is to be checked for an alphabetical character (upper or lower case).

’c’ One or more positions are to be checked for the characters bounded by apostrophes (a double
apostrophe indicates that a single apostrophe is the character to be checked for).

C The position is to be checked for an alphabetical character (upper or lower case), a numeric character,
or a blank.

DD The two positions are to be checked for a valid day notation (01 - 31; dependent on the values of MM
and YY/YYYY, if specified; see also Checking Dates).

H The position is to be checked for hexadecimal content (A - F, 0 - 9).

JJJ The positions are to be checked for a valid Julian Day; that is, the day number in the year (001-366,
dependent on the value of YY/YYYY, if specified. See also Checking Dates.) These mask characters
are available on mainframe computers only.

L The position is to be checked for a lower-case alphabetical character (a - z).

MM The positions are to be checked for a valid month (01 - 12).

N The position is to be checked for a numeric digit.

n... One (or more) positions are to be checked for a numeric value in the range 0 - n.

n1-n2
or
n1:n2

The positions are checked for a numeric value in the range n1-n2.

n1 and n2 must be of the same length.

P The position is to be checked for a displayable character (U, L, N or S).

S The position is to be checked for special characters.

U The position is to be checked for an upper-case alphabetical character (A - Z).

X The position is to be checked against the equivalent position in the value (operand2) following the
mask-definition.

"X" is not allowed in a variable mask definition, as it makes no sense.

YY The two positions are to be checked for a valid year (00 - 99). See also Checking Dates.

YYYY The four positions are checked for a valid year (0000 - 2699). Use the COMPOPT option
MASKCME=ON to restrict the range of valid years to 1582 - 2699.

Copyright Software AG 20036

Logical Condition CriteriaCharacters in a Mask

Z The position is to be checked for a character whose left half-byte is hexadecimally 3 or 7 (ASCII) or A
- F (EBCDIC), and whose right half-byte is hexadecimally 0 - 9.

This may be used to correctly check for numeric digits in negative numbers. With "N" (which indicates
a position to be checked for a numeric digit), a check for numeric digits in negative numbers leads to
incorrect results, because the sign of the number is stored in the last digit of the number, causing that
digit to be hexadecimally represented as non-numeric.

Within a mask, use only one "Z" for each sequence of numeric digits that is checked.

Mask Length

The length of the mask determines how many positions are to be checked.

Example:

 DEFINE DATA LOCAL
 1 #CODE (A15)
 END-DEFINE
 ...
 IF #CODE = MASK (NN’ABC’....NN)
 ...

The first two positions of #CODE are to be checked for numeric content. The three following positions are checked
for the contents "ABC". The next four positions are not to be checked. Positions ten and eleven are to be checked
for numeric content. Positions twelve to fifteen are not to be checked.

Checking Dates

Only one date may be checked within a given mask.

When dates are checked for a day (DD) and no month (MM) is specified in the mask, the current month will be
assumed.

When dates are checked for a day (DD) or a Julian day (JJJ) and no year (YY or YYYY) is specified in the mask, the
current year will be assumed.

When dates are checked for a 2-digit year (YY), the current century will be assumed if no Sliding or Fixed Window
is set. For more details about Sliding or Fixed Windows, refer to profile parameter YSLW in the Natural Parameter
Reference documentation.

Examples:

7Copyright Software AG 2003

Mask LengthLogical Condition Criteria

Example 1:

 MOVE 1131 TO #DATE (N4)
 IF #DATE = MASK (MMDD)

In this example, month and day are checked for validity. The value for month (11) will be considered valid,
whereas the value for day (31) will be invalid since the 11th month has only 30 days.

Example 2:

 IF #DATE(A8) = MASK (MM’/’DD’/’YY)

In this example, the content of the field #DATE is be checked for a valid date with the format MM/DD/YY
(month/day/year).

Example 3:

 IF #DATE (A4) = MASK (19-20YY)

In this example, the content of field #DATE is checked for a two-digit number in the range 19 to 20 followed by a
valid two-digit year (00 through 99). The century is supplied by Natural as described above.
Note: Although apparent, the above mask does not allow to check for a valid year in the range 1900 through 2099,
because the numeric value range 19-20 is checked independent of the year validation.
To check for year ranges, code one check for the date validation and another for the range validation:

 IF #DATE (A10) = MASK (YYYYŸ-‡MMŸ-‡DD) AND #DATE = MASK (19-20)

Checking Against the Content of Constants or Variables

If the value for the mask check is to be taken from either a constant or a variable, this value (operand2) must be
specified immediately following the mask-definition.

Operand2 must be at least as long as the mask.

In the mask, you indicate each position to be checked with "X", and each position not to be checked with "." (or "?"
or "_").

Example:

 DEFINE DATA LOCAL
 1 #NAME (A15)
 END-DEFINE
 ...
 IF #NAME = MASK (..XX) ’ABCD’
 ...

It is checked whether the field #NAME contains "CD" in the third and fourth positions. Positions
one and two are not checked.

The length of the mask determines how many positions are to be checked. The mask is left-justified against any field
or constant used in the mask operation. The format of the field (or constant) on the right side of the expression must
be the same as the format of the field on the left side of the expression.

If the field to be checked (operand1) is of format A, any constant used (operand2) must be enclosed in apostrophes.
If the field is numeric, the value used must be a numeric constant or the content of a numeric database field or
user-defined variable.

Copyright Software AG 20038

Logical Condition CriteriaChecking Against the Content of Constants or Variables

In either case, any characters/digits within the value specified which do not match positionally the "X" indicator
within the mask are ignored.

The result of the MASK operation is true when the indicated positions in both values are identical.

Example:

 /* EXAMPLE ’LCCMASK’
 /* EXAMPLE OF USING MASK OPTION WITHIN LOGICAL CONDITION
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 END-DEFINE
 /***
 HISTOGRAM EMPLOY-VIEW CITY
 IF CITY = MASK (....XX) ’....NN’
 DISPLAY NOTITLE CITY *NUMBER
 END-IF
 END-HISTOGRAM
 /***
 END

In the above example, the record will be accepted if the fifth and sixth positions of the field CITY each contain the
character "N".

Range Checks

When performing range checks, the number of positions verified in the supplied variable is defined by the precision
of the value supplied in the mask specification. For example, a mask of (...193...) will verify positions 4 to 6 for a
three-digit number in the range 000 to 193.

Additional Examples of Mask Definitions:

In this example, each character of #NAME is checked for an alphabetical character:
IF #NAME (A10) = MASK (AAAAAAAAAA)

In this example, positions 4 to 6 of #NUMBER are checked for a numeric value:
IF #NUMBER (A6) = MASK (...NNN)

In this example, positions 4 to 6 of #VALUE are to be checked for the value "123":
IF #VALUE(A10) = MASK (...’123’)

This example will check if #LICENSE contains a license number which begins with "NY-" and whose last five
characters are identical to the last five positions of #VALUE:
DEFINE DATA LOCAL
 1 #VALUE(A8)
 1 #LICENSE(A8)
END-DEFINE
INPUT ’ENTER KNOWN POSITIONS OF LICENSE PLATE:’ #VALUE
IF #LICENSE = MASK (’NY-’XXXXX) #VALUE

The following condition would be met by any value which contains "NAT" and "AL" no matter which and how
many other characters are between "NAT" and "AL" (this would include the values Natural and
NATIONALITY as well as NATAL):
MASK(’NAT’*’AL’)

9Copyright Software AG 2003

Range ChecksLogical Condition Criteria

Checking Packed or Unpacked Numeric Data

Legacy applications often have packed or unpacked numeric variables redefined with alphanumeric or binary fields.
Such redefinitions are not recommended, because using the packed or unpacked variable in an assignment or
computation may lead to errors or unpredictable results. To validate the contents of such a redefined variable before
the variable is used, use the N option as many as number of digits - 1 times followed by a single Z option.

Examples:

IF #P1 (P1) = MASK (Z)
IF #N4 (N4) = MASK (NNNZ)
IF #P5 (P5) = MASK (NNNNZ)

SCAN Option

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N A N P yes no

Operand2 C S A B* yes no

* Operand2 may only be binary if operand1 is alphanumeric.

The SCAN option is used to scan for a specific value within a field.

The characters used in the SCAN option (operand2) may be specified as an alphanumeric constant (a character string
bounded by apostrophes) or the contents of an alphanumeric database field or user-defined variable.

Trailing blanks are automatically eliminated from the value. Therefore, the SCAN option cannot be used to scan for
blanks.

If operand1 is alphanumeric, operand2 may also be binary.

The field to be scanned (operand1) may be of format A, N or P. The SCAN operation may be specified with the
equal (EQ) or not equal (NE) operators.

The length of the character string for the SCAN operation should be less than the length of the field to be scanned. If
the length of the character string specified is identical to the length of the field to be scanned, then an EQUAL
operator should be used instead of SCAN.

Copyright Software AG 200310

Logical Condition CriteriaSCAN Option

Example of SCAN Option:

 /* EXAMPLE ’LCCSCAN’
 /* EXAMPLE OF USING SCAN OPTION IN LOGICAL CONDITION
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 1 #VALUE (A4)
 1 #COMMENT (A10) INIT <’ ’>
 END-DEFINE
 /***
 INPUT ’ENTER SCAN VALUE:’ #VALUE LIMIT 14
 HISTOGRAM EMPLOY-VIEW NAME
 RESET #COMMENT
 IF NAME = SCAN #VALUE
 MOVE ’MATCH’ TO #COMMENT
 END-IF
 DISPLAY NOTITLE NAME *NUMBER #COMMENT
 END-HISTOGRAM
 /***
 END

ENTER SCAN VALUE: LL

 NAME NMBR #COMMENT
-------------------- --------- ----------

ABELLAN 1 MATCH
ACHIESON 1
ADAM 1
ADKINSON 8
AECKERLE 1
AFANASSIEV 2
AHL 1
AKROYD 1
ALEMAN 1
ALESTIA 1
ALEXANDER 5
ALLEGRE 1 MATCH
ALLSOP 1 MATCH
ALTINOK 1

BREAK Within Logical Condition Criteria

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S A N P I F B D T L yes no

11Copyright Software AG 2003

BREAK Within Logical Condition CriteriaLogical Condition Criteria

Note:
Dynamic or large variables are only allowed to be used as Operand1 on mainframe computers.

The BREAK option allows the current value or a portion of a value of a field to be compared to the value contained
in the same field in the previous pass through the processing loop.

Operand1 specifies the control field which is to be checked. A specific occurrence of an array can also be used as a
control field.

/n/

The notation "/n/" may be used to indicate that only the first n positions (counting from left to right) of the control
field are to be checked for a change in value. This notation can only be used with operands of format A, B, N or P.

The result of the BREAK operation is true when a change in the specified positions of the field occurs. The result of
the BREAK operation is not true if an AT END OF DATA condition occurs.

Example:

 BREAK FIRST-NAME /1/

In this example, a check is made for a different value in the first position of the field FIRST-NAME.

Natural system functions (which are available with the AT BREAK statement) are not available with this option.

Copyright Software AG 200312

Logical Condition Criteria/n/

Example of BREAK Option:

 /* EXAMPLE ’LCCBRK’
 /* EXAMPLE OF USING BREAK OPTION IN LOGICAL CONDITION
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 BIRTH
 1 #BIRTH (A8)
 END-DEFINE
 *
 LIMIT 10
 READ EMPLOY-VIEW BY BIRTH
 MOVE EDITED BIRTH (EM=YYYYMMDD) to #BIRTH
 IF BREAK OF #BIRTH /6/
 NEWPAGE IF LESS THAN 5 LINES LEFT
 WRITE / ’-’ (50) /
 END-IF
 DISPLAY NOTITLE BIRTH (EM=YYYY-MM-DD) NAME FIRST-NAME
 END-READ
 END

 DATE NAME FIRST-NAME
 OF
 BIRTH
 ---------- -------------------- --------------------

 1940-01-01 GARRET WILLIAM
 1940-01-09 TAILOR ROBERT
 1940-01-09 PIETSCH VENUS
 1940-01-31 LYTTLETON BETTY

 --

 1940-02-02 WINTRICH MARIA
 1940-02-13 KUNEY MARY
 1940-02-14 KOLENCE MARSHA
 1940-02-24 DILWORTH TOM

 --

 1940-03-03 DEKKER SYLVIA
 1940-03-06 STEFFERUD BILL

IS Option - Checking Format and Length of Value

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S A A yes no

13Copyright Software AG 2003

IS Option - Checking Format and Length of ValueLogical Condition Criteria

This option is used to check whether the content of an alphanumeric field (operand1) can be converted to a specific
other format.

This format for which the check is performed can be:

Nll.ll Numeric with length ll.ll.

Fll Floating point with length ll.

D Date. The following date formats are possible: dd-mm-yy, dd-mm-yyyy, ddmmyyyy (dd = day, mm = month,
yy or yyyy = year). The sequence of the day, month and year components as well as the characters between
the components are determined by the profile parameter DTFORM (which is described in your Natural
Operations documentation).

T Time (according to the default time display format).

Pll.ll Packed numeric with length ll.ll .

I ll Integer with length ll .

When the check is performed, leading and trailing blanks in operand1 will be ignored.

The IS option may, for example, be used to check the content of a field before the mathematical function VAL
(extract numeric value from an alphanumeric field) is used to ensure that it will not result in a runtime error.

Note:
The IS option cannot be used to check if the value of an alphanumeric field is in the specified "format", but if it can
be converted to that "format". To check if a value is in a specific format, you can use the MASK option.

Copyright Software AG 200314

Logical Condition CriteriaIS Option - Checking Format and Length of Value

Example of IS Option:

 /* EXAMPLE ’LCCFMT’
 /* EXAMPLE OF FORMAT/LENGTH CHECK IN LOGICAL CONDITION
 /***
 DEFINE DATA LOCAL
 1 #FIELDA (A10) /* INPUT FIELD TO BE CHECKED
 1 #FIELDB (N5) /* RECEIVING FIELD OF VAL FUNCTION
 1 #DATE (A10) /* INPUT FIELD FOR DATE
 END-DEFINE
 /***
 INPUT #DATE #FIELDA
 IF #DATE IS (D)
 IF #FIELDA IS (N5)
 COMPUTE #FIELDB = VAL(#FIELDA)
 WRITE NOTITLE ’VAL FUNCTION OK’ // ’=’ #FIELDA ’=’ #FIELDB
 ELSE
 REINPUT ’FIELD DOES NOT FIT INTO N5 FORMAT’
 MARK *#FIELDA
 END-IF
 ELSE
 REINPUT ’INPUT IS NOT IN DATE FORMAT (YY-MM-DD) ’
 MARK *#DATE
 END-IF
 /**
 END

 #DATE 150487 #FIELDA

 INPUT IS NOT IN DATE FORMAT (YY-MM-DD)

Evaluation of a Logical Variable

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A L no no

This option is used in conjunction with a logical variable (format L). A logical variable may take the value "TRUE"
or "FALSE". As operand1 you specify the name of the logical variable to be used.

15Copyright Software AG 2003

Evaluation of a Logical VariableLogical Condition Criteria

Example of Logical Variable:

 /* EXAMPLE ’LCCLOG’
 /* EXAMPLE OF LOGICAL VARIABLE IN LOGICAL CONDITION
 /**
 DEFINE DATA LOCAL
 1 #SWITCH (L) INIT <TRUE>
 1 #INDEX (I1)
 END-DEFINE
 /**
 FOR #INDEX 1 5
 WRITE NOTITLE #SWITCH (EM=FALSE/TRUE) 5X ’INDEX =’ #INDEX
 WRITE NOTITLE #SWITCH (EM=OFF/ON) 7X ’INDEX =’ #INDEX
 IF #SWITCH MOVE FALSE TO #SWITCH
 ELSE
 MOVE TRUE TO #SWITCH
 END-IF
 /**
 SKIP 1
 END-FOR
 END

 TRUE INDEX = 1
 ON INDEX = 1

 FALSE INDEX = 2
 OFF INDEX = 2

 TRUE INDEX = 3
 ON INDEX = 3

 FALSE INDEX = 4
 OFF INDEX = 4

 TRUE INDEX = 5
 ON INDEX = 5

MODIFIED Option

FIND Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S A C no no

This option is used to determine if the content of a field which has been assigned attributes dynamically has been
modified during the execution of an INPUT statement.

Attribute control variables referenced in an INPUT statement are always assigned the status "NOT MODIFIED"
when the map is transmitted to the terminal.

Whenever the content of a field referencing an attribute control variable is modified, the attribute control variable has
been assigned the status "MODIFIED". When multiple fields reference the same attribute control variable, the
variable is marked "MODIFIED" if any of these fields is modified.

Copyright Software AG 200316

Logical Condition CriteriaMODIFIED Option

If operand1 is an array, the result will be true if at least one of the array elements has been assigned the status
"MODIFIED" (OR operation).

Note:
On mainframe computers, the profile parameter CVMIN (see the Natural Parameter Reference documentation) may
be used to determine if an attribute control variable is also to be assigned the status "MODIFIED" if the value of the
corresponding field is overwritten by an identical value.

Example of MODIFIED Option:

 /* EXAMPLE ’LCCMOD’
 /* EXAMPLE OF MODIFIED FIELD CHECK IN LOGICAL CONDITION
 /**
 DEFINE DATA LOCAL
 1 #ATTR (C)
 1 #A (A1) 1 #B (A1)
 END-DEFINE
 /**
 MOVE (AD=I) TO #ATTR
 /**
 INPUT (CV=#ATTR) #A #B
 IF #ATTR NOT MODIFIED
 WRITE NOTITLE ’FIELD #A OR #B HAS NOT BEEN MODIFIED’
 END-IF
 /**
 IF #ATTR MODIFIED
 WRITE NOTITLE ’FIELD #A OR #B HAS BEEN MODIFIED’
 END-IF
 /**
 END

 #A x #B

 FIELD #A OR #B HAS BEEN MODIFIED

SPECIFIED Option

This option is used to check whether an optional parameter in an invoked object (subprogram, external subroutine,
dialog or ActiveX control) has received a value from the invoking object or not.

An optional parameter is a field defined with the keyword OPTIONAL in the DEFINE DATA PARAMETER
statement of the invoked object. If a field is defined as OPTIONAL, a value can - but need not - be passed from an
invoking object to this field.

In the invoking statement, the notation nX is used to indicate parameters for which no values are passed.

17Copyright Software AG 2003

SPECIFIED OptionLogical Condition Criteria

If you process an optional parameter which has not received a value, this will cause a runtime error. To avoid such
an error, you use the SPECIFIED option in the invoked object to check whether an optional parameter has received a
value or not, and then only process it if it has.

Parameter-name is the name of the parameter as specified in the DEFINE DATA PARAMETER statement of the
invoked object.

For a field not defined as OPTIONAL, the SPECIFIED condition is always "TRUE".

Fields Used Within Logical Condition Criteria
Database fields and user-defined variables may be used to construct logical condition criteria. A database field which
is a multiple-value field or is contained in a periodic group can also be used. If a range of values for a multiple-value
field or a range of occurrences for a periodic group is specified, the condition is true if the search value is found in
any value/occurrence within the specified range.

Each value used must be compatible with the field used on the opposite side of the expression. Decimal notation may
be specified only for values used with numeric fields, and the number of decimal positions of the value must agree
with the number of decimal positions defined for the field.

If the operands are not of the same format, the second operand is converted to the format of the first operand.

The following table shows which operand formats can be used together in a logical condition:

Operand2

 Operand1

A Bn
(n<4)

Bn
(n>5)

D T I F L N P GH OH

A Y Y Y

Bn (n<4) Y Y Y Y Y Y Y

Bn (n>5) Y Y Y

D Y

T Y

I Y Y Y Y Y

F Y Y Y Y Y

L

N Y Y Y Y Y

P Y Y Y Y Y

GH Y

OH Y

GH = GUI handle, OH = object handle.

If an array is compared with a scalar value, each element of the array will be compared with the scalar value. The
condition will be true if at least one of the array elements meets the condition (OR operation).

If an array is compared with an array, each element in the array is compared with the corresponding element of the
other array. The result is true only if all element comparisons meet the condition (AND operation).

Copyright Software AG 200318

Logical Condition CriteriaFields Used Within Logical Condition Criteria

See also Processing of Arrays.

An Adabas phonetic descriptor cannot be used within a logical condition.

Examples of Logical Condition Criteria:

 FIND EMPLOYEES-VIEW WITH CITY = ’BOSTON’ WHERE SEX = ’M’
 READ EMPLOYEES-VIEW BY NAME WHERE SEX = ’M’
 ACCEPT IF LEAVE-DUE GT 45
 IF #A GT #B THEN COMPUTE #C = #A + #B
 REPEAT UNTIL #X = 500

Logical Operators in Complex Logical Expressions
Logical condition criteria may be combined using the Boolean operators "AND", "OR", and "NOT". Parentheses
may also be used to indicate logical grouping.

The operators are evaluated in the following order:

Priority Operator Meaning

1 () Parentheses

2 NOT Negation

3 AND AND operation

4 OR OR operation

The following logical-condition-criteria may be combined by logical operators to form a complex
logical-expression:

relational expressions,
extended relational expressions,
MASK, SCAN, BREAK options.

The syntax for a logical-expression is as follows:

Examples of Logical Expressions:

FIND STAFF-VIEW WITH CITY = ’TOKYO’
 WHERE BIRTH GT 19610101 AND SEX = ’F’

IF NOT (#CITY = ’A’ THRU ’E’)

19Copyright Software AG 2003

Logical Operators in Complex Logical ExpressionsLogical Condition Criteria

For information on comparing arrays in a logical expression, see Processing of Arrays.

Note:
If multiple logical-condition-criteria are connected with "AND", the evaluation terminates as soon as the first of
these criteria is not true.

Copyright Software AG 200320

Logical Condition CriteriaLogical Operators in Complex Logical Expressions

	Logical Condition Criteria
	Relational Expression
	Arithmetic Expressions in Logical Conditions
	Handles in Logical Conditions
	SUBSTRING Option in Relational Expression

	Extended Relational Expression
	MASK Option
	Constant Mask
	Variable Mask
	Characters in a Mask
	Mask Length
	Checking Dates
	Checking Against the Content of Constants or Variables
	Range Checks
	Checking Packed or Unpacked Numeric Data

	SCAN Option
	BREAK Within Logical Condition Criteria
	/n/

	IS Option - Checking Format and Length of Value
	Evaluation of a Logical Variable
	MODIFIED Option
	SPECIFIED Option
	Fields Used Within Logical Condition Criteria
	Logical Operators in Complex Logical Expressions

